PFRL Documentation
Release 0.4.0

Preferred Networks, Inc.

Jul 16, 2023

Contents

1 Installation
1.1 How to install PFRL

2 API Reference

2.1 Actionvalues oo
22 Agents ...
23 Experiments
24 Explorerso
25 Modules
26 Policies e
27 Q-functions
2.8 ReplayBuffers 0.

3 Indices and tables

Index

w W

........................ 29

PFRL Documentation, Release 0.4.0

PFRL is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement algorithms
in Python using PyTorch.

Contents 1

https://pytorch.org/

PFRL Documentation, Release 0.4.0

2 Contents

CHAPTER 1

Installation

1.1 How to install PFRL

PFRL is tested with 3.7.7. For other requirements, see requirements.txt.

Listing 1: requirements.txt

torch>=1.3.0
gym>=0.9.7
numpy>=1.10.4
filelock
pillow

PFRL can be installed via PyPI,

pip install pfrl

or through the source code:

git clone https://github.com/pfnet/pfrl.git
cd pfril
python setup.py install

PFRL Documentation, Release 0.4.0

4 Chapter 1. Installation

CHAPTER 2

API Reference

2.1 Action values

2.1.1 Action value interfaces

class pfrl.action_value.ActionValue
Struct that holds state-fixed Q-functions and its subproducts.
Every operation it supports is done in a batch manner.

evaluate_actions (actions)
Evaluate Q(s,a) with a = given actions.

greedy_actions
Get argmax_a Q(s,a).

max
Evaluate max Q(s,a).

params
Learnable parameters of this action value.

Returns tuple of torch.Tensor

2.1.2 Action value implementations

class pfrl.action_value.DiscreteActionValue (q_values, q_values_formatter=<function

))) DiscreteActionValue. <lambda>>)
Q-function output for discrete action space.

Parameters g values (torch.Tensor) — Array of Q values whose shape is (batchsize,
n_actions)

class pfrl.action_value.QuadraticActionValue (mu, mat, v, min_action=None,

))) max_action=None)
Q-function output for continuous action space.

PFRL Documentation, Release 0.4.0

See: http://arxiv.org/abs/1603.00748

Define a Q(s,a) with A(s,a) in a quadratic form.

Q(s,a) = V(s,a) + A(s,a) A(s,a) = -1/2 (u - mu(s))*T P(s) (u - mu(s))

Parameters

e mu (torch. Tensor)—mu(s), actions that maximize A(s,a)
* mat (torch. Tensor) — P(s), coefficient matrices of A(s,a). It must be positive definite.
e v(torch.Tensor)— V(s), values of s
e min_action (ndarray)— minimum action, not batched
* max_action (ndarray) - maximum action, not batched

class pfrl.action_value.SingleActionValue (evaluator, maximizer=None)
ActionValue that can evaluate only a single action.

2.2 Agents

2.2.1 Agent interfaces
class pfrl.agent.Agent
Abstract agent class.

act (obs: Any) — Any
Select an action.

Returns action
Return type ~object

get_statisties () — List[Tuple[str, Any]]
Get statistics of the agent.

Returns

List of two-item tuples. The first item in a tuple is a str that represents the name of item,
while the second item is a value to be recorded.

Example: [(‘average_loss’, 0), (‘average_value’, 1), ...]

load (dirname: str) — None
Load internal states.

Returns None

observe (0bs: Any, reward: float, done: bool, reset: bool) — None
Observe consequences of the last action.

Returns None

save (dirname: str) — None
Save internal states.

Returns None

6 Chapter 2. API Reference

http://arxiv.org/abs/1603.00748
https://docs.python.org/3/library/functions.html#object

PFRL Documentation, Release 0.4.0

2.2.2 Agent implementations

class pfrl.agents.A2C (model, optimizer, gamma, num_processes, gpu=None, update_steps=35,

phi=<function A2C.<lambda>>, pi_loss_coef=1.0, v_loss_coef=0.5, en-
tropy_coeff=0.01, use_gae=False, tau=0.95, act_deterministically=False,
max_grad_norm=None, average_actor_loss_decay=0.999, av-
erage_entropy_decay=0.999, average_value_decay=0.999,
batch_states=<function batch_states>)

A2C: Advantage Actor-Critic.

A2C is a synchronous, deterministic variant of Asynchronous Advantage Actor Critic (A3C).

See https://arxiv.org/abs/1708.05144

Parameters

model (nn.Module)— Model to train

optimizer (torch.optim.Optimizer)— optimizer used to train the model
gamma (f1oat) — Discount factor [0,1]

num_processes (int)— The number of processes

gpu (int)— GPU device id if not None nor negative.

update_steps (int)— The number of update steps

phi (callable)— Feature extractor function

pi_loss_coef (float)— Weight coefficient for the loss of the policy
v_loss_coef (f1oat)— Weight coefficient for the loss of the value function
entropy_coeff (float)— Weight coefficient for the loss of the entropy
use_gae (bool) — use generalized advantage estimation(GAE)

tau (float) — gae parameter

act_deterministically (bool) — If set true, choose most probable actions in act
method.

max_grad_norm (float or None) — Maximum L2 norm of the gradient used for
gradient clipping. If set to None, the gradient is not clipped.

average_actor_loss_decay (f1oat)— Decay rate of average actor loss. Used only
to record statistics.

average_entropy_decay (float) — Decay rate of average entropy. Used only to
record statistics.

average_value_decay (f1oat) — Decay rate of average value. Used only to record
statistics.

batch_states (callable)— method which makes a batch of observations. default is
pfrlutils.batch_states.batch_states

class pfrl.agents.A3C (model, optimizer, t_max, gamma, beta=0.01, process_idx=0,

phi=<function A3C.<lambda>>, pi_loss_coef=1.0, v_loss_coef=0.5,
keep_loss_scale_same=False, normalize_grad_by_t_max=False,
use_average_reward=False, act_deterministically=False,
max_grad_norm=None, recurrent=False, average_entropy_decay=0.999,

average_value_decay=0.999, batch_states=<function batch_states>)

A3C: Asynchronous Advantage Actor-Critic.

2.2. Agents

https://arxiv.org/abs/1708.05144
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PFRL Documentation, Release 0.4.0

See http://arxiv.org/abs/1602.01783
Parameters
* model (A3CModel) — Model to train
* optimizer (torch.optim.Optimizer)— optimizer used to train the model
* t_max (int)— The model is updated after every t_max local steps

* gamma (f1oat) — Discount factor [0,1]

beta (float)— Weight coefficient for the entropy regularizaiton term.

* process_idx (int) - Index of the process.

phi (callable)— Feature extractor function
* pi_loss_coef (float)— Weight coefficient for the loss of the policy
* v_loss_coef (float)— Weight coefficient for the loss of the value function

* act_deterministically (bool) — If set true, choose most probable actions in act
method.

* max_grad_norm (float or None) — Maximum L2 norm of the gradient used for
gradient clipping. If set to None, the gradient is not clipped.

* recurrent (bool) - If set to True, model is assumed to implement
pfrl.nn.StatelessRecurrent.

* batch_states (callable)— method which makes a batch of observations. default is
pfrlutils.batch_states.batch_states

class pfrl.agents.ACER (model, optimizer, t_max, gamma, replay_buffer, beta=0.01,
phi=<function ACER.<lambda>>, pi_loss_coef=1.0, Q_loss_coef=0.5,
use_trust_region=True, trust_region_alpha=0.99, trust_region_delta=1,
truncation_threshold=10, disable_online_update=False, n_times_replay=S8,
replay_start_size=10000, normalize_loss_by_steps=True,
act_deterministically=False, max_grad_norm=None, recur-
rent=False, use_Q_opc=False, average_entropy_decay=0.999, aver-

age_value_decay=0.999, average_kl_decay=0.999, logger=None)
ACER (Actor-Critic with Experience Replay).

See http://arxiv.org/abs/1611.01224
Parameters

* model (ACERModel) — Model to train. It must be a callable that accepts observations as
input and return three values: action distributions (Distribution), Q values (ActionValue)
and state values (torch.Tensor).

* optimizer (torch.optim.Optimizer)— optimizer used to train the model
* t_max (int)— The model is updated after every t_max local steps
* gamma (f1oat) — Discount factor [0,1]

* replay buffer (EpisodicReplayBuffer)— Replay buffer to use. If set None, this
agent won’t use experience replay.

* beta (f1loat)— Weight coefficient for the entropy regularizaiton term.
* phi (callable) - Feature extractor function

* pi_loss_coef (float)— Weight coefficient for the loss of the policy

8 Chapter 2. API Reference

http://arxiv.org/abs/1602.01783
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
http://arxiv.org/abs/1611.01224
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PFRL Documentation, Release 0.4.0

* Q loss_coef (float)— Weight coefficient for the loss of the value function
* use_trust_region (bool)—If set true, use efficient TRPO.

* trust_region_alpha (float) — Decay rate of the average model used for efficient
TRPO.

* trust_region_delta (float)— Threshold used for efficient TRPO.

* truncation_threshold (float or None)- Threshold used to truncate larger im-
portance weights. If set None, importance weights are not truncated.

* disable_online_update (bool) — If set true, disable online on-policy update and
rely only on experience replay.

* n_times_replay (int) — Number of times experience replay is repeated per one time
of online update.

* replay start_size (int)— Experience replay is disabled if the number of transitions
in the replay buffer is lower than this value.

* normalize_loss_by_ steps (bool)-Ifsettrue, losses are normalized by the number
of steps taken to accumulate the losses

* act_deterministically (bool) — If set true, choose most probable actions in act
method.

* max_grad_norm (float or None) — Maximum L2 norm of the gradient used for
gradient clipping. If set to None, the gradient is not clipped.

* recurrent (bool) - If set to True, model is assumed to implement
pfrl.nn.StatelessRecurrent.

* use_Q opc (bool)—If set true, use Q_opc, a Q-value estimate without importance sam-
pling, is used to compute advantage values for policy gradients. The original paper recom-
mend to use in case of continuous action.

* average_entropy_ decay (float) — Decay rate of average entropy. Used only to
record statistics.

* average_value_decay (float) — Decay rate of average value. Used only to record
statistics.

* average_kl_decay (f1oat)— Decay rate of kl value. Used only to record statistics.

class pfrl.agents.AL (*args, **kwargs)
Advantage Learning.

See: http://arxiv.org/abs/1512.04860.

Parameters alpha (f1oat)— Weight of (persistent) advantages. Convergence is guaranteed only
for alpha in [0, 1).

For other arguments, see DQN.

2.2. Agents 9

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://arxiv.org/abs/1512.04860
https://docs.python.org/3/library/functions.html#float

PFRL Documentation, Release 0.4.0

class pfrl.agents.CategoricalDoubleDQN (q_function: torch.nn.modules.module.Module,

optimizer: torch.optim.optimizer.Optimizer, re-
play_buffer: pfrl.replay_buffer.AbstractReplayBuffer,
gamma: float, explorer: pfrl.explorer.Explorer,
gpu: Optional[int] = None, replay_start_size:
int = 50000, minibatch_size: int = 32, up-

date_interval: int = 1, target_update_interval:
int = 10000, clip_delta: bool = True,
phi: Callable[[Any], Any] = <function
DON.<lambda>>, target_update_method:
str = ‘hard’, soft_update_tau: float = 0.01,
n_times_update: int = 1, batch_accumulator:
str = ’mean’, episodic_update_len: Op-

tional[int] = None, logger: logging.Logger
= <Logger pfrlagents.dgn (WARNING)>,
batch_states: Callable[[Sequence[Any],
torch.device, Callable[[Any], Any]], Any] =
<function batch_states>, recurrent: bool = False,

max_grad_norm: Optional[float] = None)
Categorical Double DQN.

class pfrl.agents.CategoricalDQN (q_function: torch.nn.modules.module. Module, opti-

mizer: torch.optim.optimizer.Optimizer, replay_buffer:
pfrl.replay_buffer.AbstractReplayBuffer, gamma: float, ex-
plorer: pfrl.explorer.Explorer, gpu: Optional[int] = None,
replay_start_size: int = 50000, minibatch_size: int = 32, up-
date_interval: int = I, target_update_interval: int = 10000,
clip_delta: bool = True, phi: Callable[[Any], Any] = <func-
tion DON.<lambda>>, target_update_method: str = ’hard’,
soft_update_tau: float = 0.01, n_times_update: int = I,
batch_accumulator: str = ’‘mean’, episodic_update_len:
Optional[int] = None, logger: logging.Logger =
<Logger pfrl.agents.dgn (WARNING)>, batch_states:
Callable[[Sequence[Any], torch.device, Callable[[Any],
Any]], Any] = <function batch_states>, recurrent: bool =

False, max_grad_norm: Optional[float] = None)
Categorical DQN.

See https://arxiv.org/abs/1707.06887.

Arguments are the same as those of DQN except q_function must return DistributionalDiscrete ActionValue and
clip_delta is ignored.

class pfrl.agents.DDPG (policy, q_func, actor_optimizer, critic_optimizer, replay_buffer, gamma,

explorer, gpu=None, replay_start_size=50000, minibatch_size=32,
update_interval=1, target_update_interval=10000, phi=<function
DDPG.<lambda>>, target_update_method="hard’, soft_update_tau=0.01,
n_times_update=1, recurrent=False, episodic_update_len=None, log-
ger=<Logger pfrl.agents.ddpg (WARNING)>, batch_states=<function

batch_states>, burnin_action_func=None)
Deep Deterministic Policy Gradients.

This can be used as SVG(0) by specifying a Gaussian policy instead of a deterministic policy.
Parameters

* policy (torch.nn.Module)— Policy

10

Chapter 2. API Reference

https://arxiv.org/abs/1707.06887

PFRL Documentation, Release 0.4.0

e q func (torch.nn.Module) - Q-function

* actor_optimizer (Optimizer)— Optimizer setup with the policy

* critic_optimizer (Optimizer)— Optimizer setup with the Q-function
* replay_buffer (ReplayBuffer)— Replay buffer

* gamma (1] oat) — Discount factor

* explorer (Explorer) — Explorer that specifies an exploration strategy.

* gpu (int)— GPU device id if not None nor negative.

* replay_start_size (int) — if the replay buffer’s size is less than replay_start_size,
skip update

* minibatch_size (int) - Minibatch size

* update_interval (int)— Model update interval in step

* target_update_interval (int)— Target model update interval in step
* phi (callable) - Feature extractor applied to observations

* target_update_method (str)— ‘hard’ or ‘soft’.

* soft_update_tau (float) - Tau of soft target update.

* n_times_update (int)— Number of repetition of update

e batch_accumulator (str) - ‘mean’ or ‘sum’

* episodic_update (bool)— Use full episodes for update if set True

* episodic_update_len (int or None)— Subsequences of this length are used for
update if set int and episodic_update=True

* logger (Logger) — Logger used

* batch_states (callable)— method which makes a batch of observations. default is
pfrlutils.batch_states.batch_states

* burnin_action_func (callable or None) — If not None, this callable object is
used to select actions before the model is updated one or more times during training.

class pfrl.agents.DoubleDON (q_function: torch.nn.modules.module.Module, opti-
mizer: torch.optim.optimizer.Optimizer, replay_buffer:
pfrl.replay_buffer.AbstractReplayBuffer, gamma: float, explorer:
pfrl.explorer.Explorer, gpu: Optional[int] = None, replay_start_size:
int = 50000, minibatch_size: int = 32, update_interval: int
= 1, target_update_interval: int = 10000, clip_delta: bool =
True, phi: Callable[[Any], Any] = <function DQON.<lambda>>,
target_update_method: str = ‘hard’, soft_update_tau: float
= 0.01, n_times_update: int = 1, batch_accumulator: str =
‘mean’, episodic_update_len: Optional[int] = None, logger: log-
ging.Logger = <Logger pfrl.agents.dgn (WARNING)>, batch_states:
Callable[[Sequence[Any], torch.device, Callable[[Any], Any]],
Any] = <function batch_states>, recurrent: bool = False,

max_grad_norm: Optional[float] = None)
Double DQN.

See: http://arxiv.org/abs/1509.06461.

class pfrl.agents.DoublePAL (*args, **kwargs)

2.2. Agents 11

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
http://arxiv.org/abs/1509.06461

PFRL Documentation, Release 0.4.0

class pfrl.agents.DPP (*args, **kwargs)
Dynamic Policy Programming with softmax operator.

Parameters eta (1 1oat) — Positive constant.

For other arguments, see DQN.

class pfrl.agents.DQN (q_function: torch.nn.modules.module.Module, opti-
mizer: torch.optim.optimizer. Optimizer, replay_buffer:
pfrl.replay_buffer.AbstractReplayBuffer, gamma: float, explorer:

pfrl.explorer.Explorer, gpu: Optional[int] = None, replay_start_size:
int = 50000, minibatch_size: int = 32, update_interval: int = I,
target_update_interval: int = 10000, clip_delta: bool = True, phi:
Callable[[Any], Any] = <function DON.<lambda>>, target_update_method:
str = ’hard’, soft_update_tau: float = 0.01, n_times_update: int = I,
batch_accumulator: str = ’mean’, episodic_update_len: Optional[int] =
None, logger: logging.Logger = <Logger pfrl.agents.dgn (WARNING)>,
batch_states: Callable[[Sequence[Any], torch.device, Callable[[Any], Any]],
Any] = <function batch_states>, recurrent: bool = False, max_grad_norm:

Optional[float] = None)
Deep Q-Network algorithm.

Parameters
* g function (StateQFunction)— Q-function
* optimizer (Optimizer)— Optimizer that is already setup
* replay_ buffer (ReplayBuffer)— Replay buffer
e gamma (1] oat) — Discount factor
* explorer (Explorer) — Explorer that specifies an exploration strategy.
* gpu (int)— GPU device id if not None nor negative.

* replay_start_size (int) — if the replay buffer’s size is less than replay_start_size,
skip update

e minibatch_size (int)— Minibatch size

* update_interval (int) - Model update interval in step

* target_update_interval (int)— Target model update interval in step
* clip_delta (bool) - Clip delta if set True

* phi (callable) - Feature extractor applied to observations

* target_update_method (st r) - ‘hard’ or ‘soft’.

* soft_update_tau (float) - Tau of soft target update.

* n_times_update (int)— Number of repetition of update

e batch_accumulator (str) - ‘mean’ or ‘sum’

* episodic_update_len (int or None)— Subsequences of this length are used for
update if set int and episodic_update=True

* logger (Logger) — Logger used

* batch_states (callable)— method which makes a batch of observations. default is
pfrlutils.batch_states.batch_states

12 Chapter 2. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

PFRL Documentation, Release 0.4.0

* recurrent (bool)—If set to True, model is assumed to implement pfrl.nn.Recurrent and
is updated in a recurrent manner.

* max_grad norm (float or None) — Maximum L2 norm of the gradient used for
gradient clipping. If set to None, the gradient is not clipped.

class pfrl.agents.IQN (*args, **kwargs)
Implicit Quantile Networks.

See https://arxiv.org/abs/1806.06923.
Parameters

* quantile_thresholds_N (int)— Number of quantile thresholds used in quantile re-
gression.

* quantile_thresholds_N_prime (int) — Number of quantile thresholds used to
sample from the return distribution at the next state.

* quantile_thresholds_K (int) — Number of quantile thresholds used to compute
greedy actions.

* act_deterministically (bool)—-IQN’s action selection is by default stochastic as
it samples quantile thresholds every time it acts, even for evaluation. If this option is set
to True, it uses equally spaced quantile thresholds instead of randomly sampled ones for
evaluation, making its action selection deterministic.

For other arguments, see pfrl.agents.DQN.

class pfrl.agents.PAL (*args, **kwargs)
Persistent Advantage Learning.

See: http://arxiv.org/abs/1512.04860.

Parameters alpha (f1oat)— Weight of (persistent) advantages. Convergence is guaranteed only
for alpha in [0, 1).

For other arguments, see DQN.

class pfrl.agents.PPO (model, optimizer, obs_normalizer=None, gpu=None, gamma=0.99,
lambd=0.95, phi=<function PPO.<lambda>>, value_func_coef=1.0,
entropy_coef=0.01, update_interval=2048, minibatch_size=64, epochs=10,
clip_eps=0.2, clip_eps_vf=None, standardize_advantages=True,
batch_states=<function batch_states>, recurrent=Fualse,
max_recurrent_sequence_len=None, act_deterministically=False,
max_grad_norm=None, value_stats_window=1000, en-
tropy_stats_window=1000, value_loss_stats_window=100, pol-

icy_loss_stats_window=100)
Proximal Policy Optimization

See https://arxiv.org/abs/1707.06347
Parameters

* model (torch.nn.Module) — Model to train (including recurrent models) state s |->
(pi(s, L), v(s))

* optimizer (torch.optim.Optimizer)— Optimizer used to train the model

gpu (int) — GPU device id if not None nor negative
* gamma (f1oat) — Discount factor [0, 1]

e lambd (f1oat)— Lambda-return factor [0, 1]

2.2. Agents

13

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://arxiv.org/abs/1806.06923
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
http://arxiv.org/abs/1512.04860
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1707.06347
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PFRL Documentation, Release 0.4.0

Statistics:

phi (callable) — Feature extractor function

value_func_coef (float)— Weight coefficient for loss of value function (0, inf)
entropy_coef (float)— Weight coefficient for entropy bonus [0, inf)
update_interval (int) - Model update interval in step

minibatch_size (int) - Minibatch size

epochs (int) — Training epochs in an update

clip_eps (float) - Epsilon for pessimistic clipping of likelihood ratio to update policy

clip_eps_vf (float)— Epsilon for pessimistic clipping of value to update value func-
tion. If it is None, value function is not clipped on updates.

standardize_advantages (bool) — Use standardized advantages on updates

recurrent (bool) - If set to True, model is assumed to implement pfrl.nn.Recurrent and
update in a recurrent manner.

max_recurrent_sequence_len (int)-— Maximum length of consecutive sequences
of transitions in a minibatch for updating the model. This value is used only when recurrent
is True. A smaller value will encourage a minibatch to contain more and shorter sequences.

act_deterministically (bool) - If set to True, choose most probable actions in the
act method instead of sampling from distributions.

max_grad_norm (float or None) — Maximum L2 norm of the gradient used for
gradient clipping. If set to None, the gradient is not clipped.

value_stats_window (int)— Window size used to compute statistics of value predic-
tions.

entropy_stats_window (int) — Window size used to compute statistics of entropy
of action distributions.

value_loss_stats_window (int) — Window size used to compute statistics of loss
values regarding the value function.

policy_loss_stats_window (int)— Window size used to compute statistics of loss
values regarding the policy.

average_value: Average of value predictions on non-terminal states. It’s updated

average_entropy: Average of entropy of action distributions on non-terminal states. It’s updated on
(batch_)act_and_ train.

average_value_loss: Average of losses regarding the value function. It’s updated after the model is up-

(batch_)act_and_train.

dated.

average_policy_loss: Average of losses regarding the policy. It’s updated after the model is updated.

n_updates: Number of model updates so far. explained_variance: Explained variance computed from the

last batch.

14

Chapter 2. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PFRL Documentation, Release 0.4.0

class pfrl.agents.REINFORCE (model,
FORCE.<lambda>>,
average_entropy_decay=0.999,
batch_states=<function

class pfrl.agents.SoftActorCritic (policy,

gpu=None, beta=0, phi=<function REIN-

batchsize=1, act_deterministically=False,
backward_separately=False,
batch_states>, recurrent=False,

optimizer,

max_grad_norm=None, logger=None)

William’s episodic REINFORCE.

Parameters

* model (Policy)— Model to train. It must be a callable that accepts observations as input
and return action distributions (Distribution).

* optimizer (torch.optim.Optimizer)— optimizer used to train the model

* gpu (int)— GPU device id if not None nor negative

* beta (float)— Weight coefficient for the entropy regularizaiton term.

e phi (callable) - Feature extractor function

* act_deterministically (bool) — If set true, choose most probable actions in act

method.

* batchsize (int)— Number of episodes used for each update

* backward_separately (bool)—If set true, call backward separately for each episode
and accumulate only gradients.

* average_entropy_decay (float) — Decay rate of average entropy. Used only to

record statistics.

e batch_states (callable)— Method which makes a batch of observations. default is

pfrlutils.batch_states

* recurrent (bool)—If setto True, model is assumed to implement pfrl.nn.Recurrent and

update in a recurrent manner.

* max_grad_norm (float or None) — Maximum L2 norm of the gradient used for
gradient clipping. If set to None, the gradient is not clipped.

* logger (logging. Logger)— Logger to be used.

Soft Actor-Critic (SAC).
See https://arxiv.org/abs/1812.05905

Parameters

* policy (Policy) - Policy.

q_funcl, q_func2, policy_optimizer,
q_funcl_optimizer, q_func2_optimizer, replay_buffer,
gamma, gpu=None, replay_start_size=10000,

minibatch_size=100,
phi=<function

update_interval=1,
SoftActorCritic.<lambda>>,
soft_update_tau=0.005, max_grad_norm=None, log-
ger=<Logger pfrl.agents.soft_actor_critic (WARN-
ING)>, batch_states=<function batch_states>,
burnin_action_func=None, initial_temperature=1.0,
entropy_target=None, temperature_optimizer_lr=None,
act_deterministically=True)

* g _funcl (Module) — First Q-function that takes state-action pairs as input and outputs

predicted Q-values.

2.2,

Agents

15

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/logging.html#logging.Logger
https://arxiv.org/abs/1812.05905

PFRL Documentation, Release 0.4.0

* g_func2 (Module)— Second Q-function that takes state-action pairs as input and outputs
predicted Q-values.

* policy optimizer (Optimizer)— Optimizer setup with the policy

* g funcl_optimizer (Optimizer)— Optimizer setup with the first Q-function.

* g func2_optimizer (Optimizer)— Optimizer setup with the second Q-function.
* replay buffer (ReplayBuffer)— Replay buffer

* gamma (foat) — Discount factor

* gpu (int)— GPU device id if not None nor negative.

* replay_start_size (int) — if the replay buffer’s size is less than replay_start_size,
skip update

* minibatch_size (int) - Minibatch size

* update_interval (int) - Model update interval in step
* phi (callable)— Feature extractor applied to observations
* soft_update_tau (float) - Tau of soft target update.

* logger (Logger) — Logger used

* batch_states (callable) - method which makes a batch of observations. default is
pfrlutils.batch_states.batch_states

* burnin_action_func (callable or None) — If not None, this callable object is
used to select actions before the model is updated one or more times during training.

* initial_temperature (float) — Initial temperature value. If entropy_target is set
to None, the temperature is fixed to it.

* entropy_target (float or None) — If set to a float, the temperature is adjusted
during training to match the policy’s entropy to it.

* temperature_optimizer_1lr (fIloat)— Learning rate of the temperature optimizer.
If set to None, Adam with default hyperparameters is used.

* act_deterministically (bool)—If set to True, choose most probable actions in the
act method instead of sampling from distributions.

class pfrl.agents.TD3 (policy, q_funcl, q_func2, policy_optimizer, q_funcl_optimizer,
q_func2_optimizer, replay_buffer, gamma, explorer, gpu=None, re-
play_start_size=10000, minibatch_size=100, update_interval=1,
phi=<function TD3.<lambda>>, soft_update_tau=0.005, n_times_update=1,
max_grad_norm=None, logger=<Logger pfrl.agents.td3 (WARNING)>,
batch_states=<function batch_states>, burnin_action_func=None,
policy_update_delay=2, target_policy_smoothing_func=<function de-

fault_target_policy_smoothing_func>)
Twin Delayed Deep Deterministic Policy Gradients (TD3).

See http://arxiv.org/abs/1802.09477
Parameters
* policy (Policy) - Policy.

* g _funcl (Module) — First Q-function that takes state-action pairs as input and outputs
predicted Q-values.

16 Chapter 2. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
http://arxiv.org/abs/1802.09477

PFRL Documentation, Release 0.4.0

* g_func2 (Module)— Second Q-function that takes state-action pairs as input and outputs
predicted Q-values.

* policy optimizer (Optimizer)— Optimizer setup with the policy

* g funcl_optimizer (Optimizer)— Optimizer setup with the first Q-function.

* g func2_optimizer (Optimizer)— Optimizer setup with the second Q-function.
* replay buffer (ReplayBuffer)— Replay buffer

* gamma (foat) — Discount factor

* explorer (Explorer) — Explorer that specifies an exploration strategy.

* gpu (int)— GPU device id if not None nor negative.

* replay_start_size (int) — if the replay buffer’s size is less than replay_start_size,
skip update

e minibatch_size (int) - Minibatch size

* update_interval (int)— Model update interval in step
* phi (callable) - Feature extractor applied to observations
* soft_update_tau (float) - Tau of soft target update.

* logger (Logger) — Logger used

e batch_states (callable)— method which makes a batch of observations. default is
pfrl.utils.batch_states.batch_states

* burnin_action_func (callable or None) - If not None, this callable object is
used to select actions before the model is updated one or more times during training.

* policy update_delay (int) — Delay of policy updates. Policy is updated once in
policy_update_delay times of Q-function updates.

* target_policy_ smoothing func (callable)- Callable that takes a batch of ac-
tions as input and outputs a noisy version of it. It is used for target policy smoothing when
computing target Q-values.

class pfrl.agents.TRPO (policy, vf, vf_optimizer, obs_normalizer=None, gpu=None,
gamma=0.99, lambd=0.95, phi=<function TRPO.<lambda>>, en-
tropy_coef=0.01, update_interval=2048, max_kl=0.01, vf _epochs=3,
vf_batch_size=64, standardize_advantages=True, batch_states=<function

batch_states>, recurrent=False, max_recurrent_sequence_len=None,
line_search_max_backtrack=10, conjugate_gradient_max_iter=10,
conjugate_gradient_damping=0.01, act_deterministically=False,
max_grad_norm=None, value_stats_window=1000, en-
tropy_stats_window=1000, kl_stats_window=100, pol-
icy_step_size_stats_window=100, logger=<Logger pfrl.agents.trpo
(WARNING)>)

Trust Region Policy Optimization.

A given stochastic policy is optimized by the TRPO algorithm. A given value function is also trained to predict
by the TD(lambda) algorithm and used for Generalized Advantage Estimation (GAE).

Since the policy is optimized via the conjugate gradient method and line search while the value function is
optimized via SGD, these two models should be separate.

Since TRPO requires second-order derivatives to compute Hessian-vector products, your policy must contain
only functions that support second-order derivatives.

2.2. Agents 17

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

PFRL Documentation, Release 0.4.0

See https://arxiv.org/abs/1502.05477 for TRPO. See https://arxiv.org/abs/1506.02438 for GAE.
Parameters

* policy (Policy) — Stochastic policy. Its forward computation must contain only func-
tions that support second-order derivatives. Recurrent models are not supported.

» vf (ValueFunction)— Value function. Recurrent models are not supported.
* vf_optimizer (torch.optim.Optimizer)— Optimizer for the value function.

* obs_normalizer (pfrl.nn.EmpiricalNormalization or None) - If set to
pfrl.nn.EmpiricalNormalization, it is used to normalize observations based on the empirical
mean and standard deviation of observations. These statistics are updated after computing
advantages and target values and before updating the policy and the value function.

* gpu (int)— GPU device id if not None nor negative

e gamma (1] oat) — Discount factor [0, 1]

e lambd (f1oat)— Lambda-return factor [0, 1]

* phi (callable) - Feature extractor function

* entropy_coef (float)— Weight coefficient for entropy bonus [0, inf)

* update_interval (int) — Interval steps of TRPO iterations. Every time after this
amount of steps, this agent updates the policy and the value function using data from these
steps.

* v£_epochs (int) — Number of epochs for which the value function is trained on each
TRPO iteration.

e v£_batch_size (int) - Batch size of SGD for the value function.
* standardize_advantages (bool)— Use standardized advantages on updates

* line_search_max_backtrack (int) — Maximum number of backtracking in line
search to tune step sizes of policy updates.

* conjugate_gradient_max_iter (int)-—Maximum number of iterations in the con-
jugate gradient method.

* conjugate_gradient_damping (float) — Damping factor used in the conjugate
gradient method.

* act_deterministically (bool)- If setto True, choose most probable actions in the
act method instead of sampling from distributions.

* max_grad_norm (float or None) — Maximum L2 norm of the gradient used for
gradient clipping. If set to None, the gradient is not clipped.

* value_stats_window (int)— Window size used to compute statistics of value predic-
tions.

* entropy_stats_window (int) — Window size used to compute statistics of entropy
of action distributions.

* k1_stats_window (int) — Window size used to compute statistics of KL divergence
between old and new policies.

* policy_step_size_stats_window (int)— Window size used to compute statistics
of step sizes of policy updates.

Statistics:

18 Chapter 2. API Reference

https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1506.02438
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PFRL Documentation, Release 0.4.0

average_value: Average of value predictions on non-terminal states. It’s updated after act or
batch_act methods are called in the training mode.

average_entropy: Average of entropy of action distributions on non-terminal states. It’s updated after
act or batch_act methods are called in the training mode.

average_kl: Average of KL divergence between old and new policies. It’s updated after the policy is
updated.

average_policy_step_size: Average of step sizes of policy updates It’s updated after the policy is up-
dated.

2.3 Experiments

2.3.1 Training and evaluation

pfrl.experiments.train_agent_async (outdir, processes, make_eny, profile=False,
steps=80000000, eval_interval=1000000,
eval_n_steps=None, eval_n_episodes=10,
eval_success_threshold=0.0, max_episode_len=None,
step_offset=0, successful_score=None, agent=None,
make_agent=None, global_step_hooks=[], eval-
uation_hooks=(), save_best_so_far_agent=True,
use_tensorboard=False, logger=None, ran-
dom_seeds=None, stop_event=None, excep-

tion_event=None, use_shared_memory=True)
Train agent asynchronously using multiprocessing.

Either agent or make_agent must be specified.
Parameters
* outdir (str)— Path to the directory to output things.
* processes (int)— Number of processes.
* make_env (callable)— (process_idx, test) -> Environment.
* profile (bool) - Profile if set True.
* steps (int)— Number of global time steps for training.

* eval_interval (int) — Interval of evaluation. If set to None, the agent will not be
evaluated at all.

* eval_n_steps (int)— Number of eval timesteps at each eval phase

* eval_n episodes (int) - Number of eval episodes at each eval phase

* eval_success_threshold (f1oat) —r-threshold above which grasp succeeds
* max_episode_len (int) - Maximum episode length.

* step_offset (int) - Time step from which training starts.

* successful_score (float) — Finish training if the mean score is greater or equal to
this value if not None

* agent (Agent) — Agent to train.

* make_agent (callable)— (process_idx) -> Agent

2.3. Experiments 19

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

PFRL Documentation, Release 0.4.0

* global_step_hooks (I1ist)— List of callable objects that accepts (env, agent, step) as
arguments. They are called every global step. See pfrl.experiments.hooks.

* evaluation_hooks (Sequence) - Sequence of
pfrl.experiments.evaluation_hooks.EvaluationHook objects. They are called after each
evaluation.

* save_best_so_far_agent (bool)—If set to True, after each evaluation, if the score
(= mean return of evaluation episodes) exceeds the best-so-far score, the current agent is
saved.

* use_tensorboard (bool)— Additionally log eval stats to tensorboard
* logger (logging. Logger)— Logger used in this function.

* random_seeds (array-1like of ints or None)- Random seeds for processes.
If set to None, [0, 1, ..., processes-1] are used.

* stop_event (nultiprocessing.Event or None)-— Event to stop training. If set
to None, a new Event object is created and used internally.

* exception_event (multiprocessing.Event or None)— Event that indicates
other thread raised an excpetion. The train will be terminated and the current agent will be
saved. If set to None, a new Event object is created and used internally.

* use_shared_memory (bool)— Share memory amongst asynchronous agents.
Returns Trained agent.

pfrl.experiments.train_agent_batch (agent, env, steps, outdir, checkpoint_freq=None,
log_interval=None, max_episode_len=None,
step_offset=0, evaluator=None, successful_score=None,

step_hooks=(), return_window_size=100, logger=None)
Train an agent in a batch environment.

Parameters
* agent — Agent to train.
* env — Environment to train the agent against.
* steps (int)— Number of total time steps for training.
* outdir (str)— Path to the directory to output things.
* checkpoint_freq (int) - frequency at which agents are stored.
* log_interval (int)— Interval of logging.
* max_episode_len (int) - Maximum episode length.
* step_offset (int) - Time step from which training starts.

* return_window_size (int)— Number of training episodes used to estimate the aver-
age returns of the current agent.

* successful_score (float) — Finish training if the mean score is greater or equal to
thisvalue if not None

* step_hooks (Sequence) — Sequence of callable objects that accepts (env, agent, step)
as arguments. They are called every step. See pfrl.experiments.hooks.

* logger (logging. Logger)— Logger used in this function.

Returns List of evaluation episode stats dict.

20 Chapter 2. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Event
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Event
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/logging.html#logging.Logger

PFRL Documentation, Release 0.4.0

pfrl.experiments.train_agent_batch_with_evaluation (agent, env, steps, eval_n_steps,
eval_n_episodes, eval_interval,
outdir, checkpoint_freq=None,
max_episode_len=None,
step_offset=0,
eval_max_episode_len=None,
return_window_size=100,
eval_env=None,
log_interval=None, success-
ful_score=None, step_hooks=(),
evaluation_hooks=(),
save_best_so_far_agent=True,
use_tensorboard="False, log-

ger=None)
Train an agent while regularly evaluating it.

Parameters
* agent — Agent to train.
* env — Environment train the againt against.
* steps (int)— Number of total time steps for training.
* eval_n_steps (int)— Number of timesteps at each evaluation phase.
* eval_n_runs (int)— Number of runs for each time of evaluation.
* eval_interval (int) - Interval of evaluation.
* outdir (st r)— Path to the directory to output things.
* log_interval (int)— Interval of logging.
* checkpoint_freq (int) - frequency with which to store networks
* max_episode_len (int) - Maximum episode length.
* step_offset (int)- Time step from which training starts.

* return_window_size (int)— Number of training episodes used to estimate the aver-
age returns of the current agent.

* eval_max_episode_len (int or None)- Maximum episode length of evaluation
runs. If set to None, max_episode_len is used instead.

¢ eval_env - Environment used for evaluation.

* successful_score (float) — Finish training if the mean score is greater or equal to
thisvalue if not None

* step_hooks (Sequence) — Sequence of callable objects that accepts (env, agent, step)
as arguments. They are called every step. See pfrl.experiments.hooks.

e evaluation_hooks (Sequence) - Sequence of
pfrl.experiments.evaluation_hooks.EvaluationHook objects. They are called after each
evaluation.

* save_best_so_far_agent (bool)—If set to True, after each evaluation, if the score
(= mean return of evaluation episodes) exceeds the best-so-far score, the current agent is
saved.

* use_tensorboard (bool)— Additionally log eval stats to tensorboard

* logger (logging. Logger)— Logger used in this function.

2.3. Experiments 21

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/logging.html#logging.Logger

PFRL Documentation, Release 0.4.0

Returns Trained agent. eval_stats_history: List of evaluation episode stats dict.

Return type agent

pfrl.experiments.train agent_with_evaluation (agent, eny, steps, eval_n_steps,
eval_n_episodes, eval_interval,
outdir, checkpoint_freq=None,

train_max_episode_len=None,
step_offset=0,
eval_max_episode_len=None,
eval_env=None, successful_score=None,
step_hooks=(), evaluation_hooks=(),
save_best_so_far_agent=True,
use_tensorboard="Fualse,
eval_during_episode=False, log-
ger=None)

Train an agent while periodically evaluating it.

Parameters
* agent — A pfrl.agent. Agent
* env — Environment train the agent against.
* steps (int) - Total number of timesteps for training.
* eval_n_steps (int)— Number of timesteps at each evaluation phase.
* eval_n_episodes (int) - Number of episodes at each evaluation phase.
e eval_interval (int) - Interval of evaluation.
* outdir (str)— Path to the directory to output data.
* checkpoint_freq (int) - frequency at which agents are stored.
* train max episode_len (int) - Maximum episode length during training.
* step_offset (int)- Time step from which training starts.

* eval_max_episode_len (int or None)-— Maximum episode length of evaluation
runs. If None, train_max_episode_len is used instead.

* eval_env - Environment used for evaluation.

* successful_score (f1oat)— Finish training if the mean score is greater than or equal
to this value if not None

* step_hooks (Sequence) — Sequence of callable objects that accepts (env, agent, step)
as arguments. They are called every step. See pfrl.experiments.hooks.

* evaluation_hooks (Sequence) - Sequence of
pfrl.experiments.evaluation_hooks.EvaluationHook objects. They are called after each
evaluation.

* save_best_so_far_agent (bool)—If set to True, after each evaluation phase, if the
score (= mean return of evaluation episodes) exceeds the best-so-far score, the current agent
is saved.

* use_tensorboard (bool)— Additionally log eval stats to tensorboard

* eval_during_ episode (bool) — Allow running evaluation during training episodes.
This should be enabled only when env and eval_env are independent.

* logger (logging. Logger) — Logger used in this function.

22 Chapter 2. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/logging.html#logging.Logger

PFRL Documentation, Release 0.4.0

Returns Trained agent. eval_stats_history: List of evaluation episode stats dict.

Return type agent

2.3.2 Training hooks
class pfrl.experiments.StepHook
Hook function that will be called in training.

This class is for clarifying the interface required for Hook functions. You don’t need to inherit this class to
define your own hooks. Any callable that accepts (env, agent, step) as arguments can be used as a hook.

class pfrl.experiments.LinearInterpolationHook (fotal_steps, start_value, stop_value, set-

ter)
Hook that will set a linearly interpolated value.

You can use this hook to decay the learning rate by using a setter function as follows:

def lr_setter(env, agent, value):
agent .optimizer.lr = value

hook = LinearInterpolationHook (10 %% 6, le-3, 0, lr_setter)

Parameters
* total_steps (int)— Number of total steps.
e start_value (float) - Start value.
* stop_value (float)— Stop value.

* setter (callable) - (env, agent, value) -> None

2.3.3 Experiment Management

pfrl.experiments.generate_exp_id (prefix=None, argv=["/home/docs/checkouts/readthedocs.org/user_builds/pfrl/envs/sta
packages/sphinx/_main__.py’, ’-T’, ’-E’, ’-b’, ’la-

tex’, ’-d’, ’_build/doctrees’, ’-D’, ’language=en’, .,
"/home/docs/checkouts/readthedocs.org/user_builds/pfrl/checkouts/stable/_readthedoc

—> str
Generate reproducible, unique and deterministic experiment id

The generated id will be string generated from prefix, Git checksum, git diff from HEAD and command line
arguments.

Returns A generated experiment id in string (str) which if avialable for directory name

pfrl.experiments.prepare_output_dir (args, basedir=None, exp_id=None, argv=None,
time_format="%Y%m%dT %H %M %S. %f ",

make_backup=True) — str
Prepare a directory for outputting training results.

An output directory, which ends with the current datetime string, is created. Then the following infomation is
saved into the directory:

args.txt: argument values and arbitrary parameters command.txt: command itself environ.txt: envi-
ronmental variables start.txt: timestamp when the experiment executed

Additionally, if the current directory is under git control, the following information is saved:

2.3. Experiments 23

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PFRL Documentation, Release 0.4.0

git-head.txt: result of git rev-parse HEAD git-status.txt: result of git status git-log.txt: result of git
log git-diff.txt: result of git diff HEAD
Parameters

* exp_id (str or None) — Experiment identifier. If None is given, reproducible ID
will be automatically generated from Git version hash and command arguments. If the
code is not under Git control, it is generated from current timestamp under the format of
time_format.

* args (dict or argparse.Namespace)— Arguments to save to see parameters

* basedir (str or None)-If a string is specified, the output directory is created under
that path. If not specified, it is created in current directory.

* argv (list or None)— The list of command line arguments passed to a script. If not
specified, sys.argv is used instead.

* time_format (str)— Format used to represent the current datetime. The default format
is the basic format of ISO 8601.

* make_backup (bool) — If there exists old experiment with same name, copy a backup
with additional suffix with time_ format.

Returns Path of the output directory created by this function (str).

2.4 Explorers

2.4.1 Explorer interfaces
class pfrl.explorer.Explorer
Abstract explorer.

select_action (t, greedy_action_func, action_value=None)
Select an action.

Parameters
e t — current time step
* greedy_action_func - function with no argument that returns an action

* action_value (ActionValue)— ActionValue object

2.4.2 Explorer implementations
class pfrl.explorers.AdditiveGaussian (scale, low=None, high=None)
Additive Gaussian noise to actions.
Each action must be numpy.ndarray.
Parameters
* scale(float or array_like of floats)— Scale parameter.

e low (float, array_like of floats, or None) — Lower bound of action
space used to clip an action after adding a noise. If set to None, clipping is not performed
on lower edge.

24 Chapter 2. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

PFRL Documentation, Release 0.4.0

* high (float, array_like of floats, or None) — Higher bound of action
space used to clip an action after adding a noise. If set to None, clipping is not performed
on upper edge.

class pfrl.explorers.AdditiveOU (mu=0.0, theta=0.15, sigma=0.3, start_with_mu=False, log-

ger=<Logger pfrl.explorers.additive_ou (WARNING)>)
Additive Ornstein-Uhlenbeck process.

Used in https://arxiv.org/abs/1509.02971 for exploration.
Parameters
* mu (float)— Mean of the OU process
* theta (float) — Friction to pull towards the mean
* sigma (float or ndarray)— Scale of noise
* start_with_mu (bool) — Start the process without noise

class pfrl.explorers.Boltzmann (7T=1.0)
Boltzmann exploration.

Parameters T (f1oat)— Temperature of Boltzmann distribution.

class pfrl.explorers.ConstantEpsilonGreedy (epsilon, random_action_func, log-
ger=<Logger pfrl.explorers.epsilon_greedy
(WARNING)>)

Epsilon-greedy with constant epsilon.
Parameters
* epsilon —epsilon used
* random_action_func - function with no argument that returns action
* logger — logger used

class pfrl.explorers.LinearDecayEpsilonGreedy (start_epsilon, end_epsilon, decay_steps,
random_action_func, logger=<Logger
pfrl.explorers.epsilon_greedy (WARN-
ING)>)
Epsilon-greedy with linearly decayed epsilon

Parameters
* start_epsilon — max value of epsilon
* end_epsilon — min value of epsilon
* decay_steps — how many steps it takes for epsilon to decay
* random_action_func - function with no argument that returns action
* logger — logger used

class pfrl.explorers.Greedy
No exploration

2.4. Explorers

25

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://arxiv.org/abs/1509.02971
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

PFRL Documentation, Release 0.4.0

2.5 Modules

2.5.1 Module interfaces

class pfrl.nn.Recurrent

Recurrent module interface.
This class defines the interface of a recurrent module PFRL support.

The interface is similar to that of torch.nn.LSTM except that sequential data are expected to be packed in
torch.nn.utils.rnn. PackedSequence.

To implement a model with recurrent layers, you can either use default container classes such as
pfrl.nn.RecurrentSequential and pfrl.nn.RecurrentBranched or write your module extending this class and
torch.nn.Module.

forward (packed_input, recurrent_state)
Multi-step batch forward computation.

Parameters

* packed_input (object) — Input sequences. Tensors must be packed in
torch.nn.utils.rnn. PackedSequence.

* recurrent_state (object or None)— Batched recurrent state. If set to None, it
is initialized.
Returns
Output sequences. Tensors will be packed in rorch.nn.utils.rnn. PackedSequence.
object or None: New batched recurrent state.

Return type object

2.5.2 Module implementations

class pfrl.nn.Branched (*modules)

Module that calls forward functions of child modules in parallel.

When the forward method of this module is called, all the arguments are forwarded to each child module’s
forward method.

The returned values from the child modules are returned as a tuple.

Parameters *modules — Child modules. Each module should be callable.

class pfrl.nn.EmpiricalNormalization (shape, batch_axis=0, eps=0.01, dtype=<class

‘numpy.float32’>, until=None, clip_threshold=None)
Normalize mean and variance of values based on empirical values.

Parameters
* shape (int or tuple of int)- Shape of input values except batch axis.
e batch_axis (int)— Batch axis.
* eps (float)— Small value for stability.
* dtype (dtype) — Dtype of input values.

* until (int or None)-If this arg is specified, the link learns input values until the sum
of batch sizes exceeds it.

26

Chapter 2. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

PFRL Documentation, Release 0.4.0

class pfrl.nn.FactorizedNoisyLinear (mu_link, sigma_scale=0.4)
Linear layer in Factorized Noisy Network

Parameters
* mu_link (nn.Linear)— Linear link that computes mean of output.

* sigma_scale (float) — The hyperparameter sigma_0 in the original paper. Scaling
factor of the initial weights of noise-scaling parameters.

class pfrl.nn.MLP (in_size, out_size, hidden_sizes, nonlinearity=<function relu>, last_wscale=1)
Multi-Layer Perceptron

class pfrl.nn.MLPBN (in_size, out_size, hidden_sizes, normalize_input=True, normalize_output=False,
nonlinearity=<function relu>, last_wscale=1)
Multi-Layer Perceptron with Batch Normalization.

Parameters
* in_size (int) - Input size.
* out_size (int)— Output size.
* hidden_sizes (l1ist of ints)- Sizes of hidden channels.
* normalize_input (bool)—If set to True, Batch Normalization is applied to inputs.
* normalize_output (bool)—If set to True, Batch Normalization is applied to outputs.

* nonlinearity (callable) — Nonlinearity between layers. It must accept a Variable
as an argument and return a Variable with the same shape. Nonlinearities with learnable
parameters such as PReLLU are not supported.

* last_wscale (fl1oat)— Scale of weight initialization of the last layer.

class pfrl.nn.SmallAtariCNN (n_input_channels=4, n_output_channels=256, activation=<function

relu>, bias=0.1)
Small CNN module proposed for DQN in NeurIPS DL Workshop, 2013.

See: https://arxiv.org/abs/1312.5602

class pfrl.nn.LargeAtariCNN (n_input_channels=4, n_output_channels=512, activation=<function

relu>, bias=0.1)
Large CNN module proposed for DQN in Nature, 2015.

See: https://www.nature.com/articles/nature14236

class pfrl.nn.RecurrentBranched (*modules)
Recurrent module that bundles parallel branches.

This is a recurrent analog to pfrl.nn.Branched. 1t bundles multiple recurrent modules.
Parameters *modules — Child modules. Each module should be recurrent and callable.

class pfrl.nn.RecurrentSequential (*args)
Sequential model that can contain stateless recurrent modules.

This is a recurrent analog to torch.nn.Sequential. It supports the recurrent interface by automatically detecting
recurrent modules and handles recurrent states properly.

For non-recurrent layers, this module automatically concatenates the input to the layers for efficient computation.

Parameters *layers — Callable objects.

2.5. Modules 27

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1312.5602
https://www.nature.com/articles/nature14236

PFRL Documentation, Release 0.4.0

2.5.3 Module utility functions
pfrl.nn.to_factorized_noisy (module, *args, **kwargs)
Add noisiness to components of given module

Currently this fn. only supports torch.nn.Linear (with and without bias)

2.6 Policies

2.6.1 Head modules for Gaussian policies

class pfrl.policies.GaussianHeadWithFixedCovariance (scale=1)
Gaussian head with fixed covariance.

This module is intended to be attached to a neural network that outputs the mean of a Gaussian policy. Its
covariance is fixed to a diagonal matrix with a given scale.

Parameters scale (f1oat) — Scale parameter.

class pfrl.policies.GaussianHeadWithDiagonalCovariance (var_func=<built-in function
softplus>)
Gaussian head with diagonal covariance.

This module is intended to be attached to a neural network that outputs a vector that is twice the size of an action
vector. The vector is split and interpreted as the mean and diagonal covariance of a Gaussian policy.

Parameters var_func (callable)— Callable that computes the variance from the second input.
It should always return positive values.

class pfrl.policies.GaussianHeadWithStateIndependentCovariance (action_size,
var_type="spherical’,
var_func=<built-
in function
softplus>,
var_param_init=0)
Gaussian head with state-independent learned covariance.

This link is intended to be attached to a neural network that outputs the mean of a Gaussian policy. The only
learnable parameter this link has determines the variance in a state-independent way.

State-independent parameterization of the variance of a Gaussian policy is often used with PPO and TRPO, e.g.,
in https://arxiv.org/abs/1709.06560.

Parameters
* action_size (int)— Number of dimensions of the action space.

* var_type (st r)— Type of parameterization of variance. It must be ‘spherical’ or ‘diago-
nal’.

* var_func (callable)— Callable that computes the variance from the var parameter. It
should always return positive values.

* var_param_init (fIloat) — Initial value the var parameter.

28 Chapter 2. API Reference

https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1709.06560
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

PFRL Documentation, Release 0.4.0

2.6.2 Head modules for deterministic policies

class pfrl.policies.DeterministicHead
Head module for a deterministic policy.

2.6.3 Head modules for categorical policies

class pfrl.policies.SoftmaxCategoricalHead

2.7 Q-functions

2.7.1 Q-function interfaces
class pfrl.g_function.StateQFunction
Abstract Q-function with state input.

__call_ (x)
Evaluates Q-function

Parameters x (ndarray) — state input

Returns An instance of ActionValue that allows to calculate the Q-values for state x and every
possible action

class pfrl.qg_function.StateActionQFunction
Abstract Q-function with state and action input.

__call__ (x,a)
Evaluates Q-function

Parameters
* x (ndarray) — state input
* a (ndarray) — action input

Returns Q-value for state x and action a

2.7.2 Q-function implementations

class pfrl.q_functions.DuelingDQN (n_actions, n_input_channels=4, activation=<function

relu>, bias=0.1)
Dueling Q-Network

See: http://arxiv.org/abs/1511.06581

class pfrl.g functions.DistributionalDuelingDQN (n_actions, n_atoms, v_min,
v_max, n_input_channels=4,
activation=<built-in method relu

of type object>, bias=0.1)
Distributional dueling fully-connected Q-function with discrete actions.

class pfrl.g functions.SingleModelStateQFunctionWithDiscreteAction (model)
Q-function with discrete actions.

Parameters model (nn.Module)— Model that is callable and outputs action values.

2.7. Q-functions 29

http://arxiv.org/abs/1511.06581

PFRL Documentation, Release 0.4.0

class pfrl.g_functions.FCStateQFunctionWithDiscreteAction (ndim_obs, n_actions,
n_hidden_channels,
n_hidden_layers,
nonlinear-
ity=<function relu>,

)))]) last_wscale=1.0)
Fully-connected state-input Q-function with discrete actions.

Parameters
* n_dim_obs — number of dimensions of observation space
* n_actions (int)— Number of actions in action space.
* n_hidden_channels — number of hidden channels
* n_hidden_layers — number of hidden layers
* nonlinearity (callable)— Nonlinearity applied after each hidden layer.
* last_wscale (f1oat)— Weight scale of the last layer.

class pfrl.g functions.DistributionalSingleModelStateQFunctionWithDiscreteAction (model,

N z_values)
Distributional Q-function with discrete actions.

Parameters
* model (nn.Module)— model that is callable and outputs atoms for each action.
* z_values (ndarray) — Returns represented by atoms. Its shape must be (n_atoms,).

class pfrl.q _functions.DistributionalFCStateQFunctionWithDiscreteAction (ndim_obs,
n_actions,
n_atoms,
v_min,
v_max,
n_hidden_channels,
n_hidden_layers,
non-
lin-
ear-
ity=<function
relu>,

last_wscale=1.0)
Distributional fully-connected Q-function with discrete actions.

Parameters
* n_dim_obs (int)— Number of dimensions of observation space.
* n_actions (int)— Number of actions in action space.
e n_atoms (int)— Number of atoms of return distribution.
* v_min (f1oat)— Minimum value this model can approximate.
* v_max (f1loat)— Maximum value this model can approximate.
* n_hidden_channels (int) - Number of hidden channels.
* n_hidden_layers (int)— Number of hidden layers.
* nonlinearity (callable)— Nonlinearity applied after each hidden layer.

* last_wscale (float)— Weight scale of the last layer.

30 Chapter 2. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

PFRL Documentation, Release 0.4.0

class pfrl.q_functions.FCQuadraticStateQFunction (n_input_channels, n_dim_action,
n_hidden_channels,
n_hidden_layers, action_space,

scale_mu=True)
Fully-connected state-input continuous Q-function.

See: https://arxiv.org/abs/1603.00748
Parameters

* n_input_channels — number of input channels
* n_dim_action — number of dimensions of action space
* n_hidden_channels — number of hidden channels
* n_hidden_layers — number of hidden layers
* action_space — action_space
* scale_mu (bool)—scale mu by applying tanh if True

class pfrl.g functions.SingleModelStateActionQFunction (model)
Q-function with discrete actions.

Parameters model (nn.Module)— Module that is callable and outputs action values.

class pfrl.g_functions.FCSAQFunction (n_dim_obs, n_dim_action, n_hidden_channels,
n_hidden_layers, nonlinearity=<function relu>,

last_wscale=1.0)
Fully-connected (s,a)-input Q-function.

Parameters
* n_dim_obs (int)— Number of dimensions of observation space.
* n_dim_action (int)— Number of dimensions of action space.
e n_hidden_channels (int)— Number of hidden channels.
* n_hidden_layers (int)— Number of hidden layers.

* nonlinearity (callable) — Nonlinearity between layers. It must accept a Variable
as an argument and return a Variable with the same shape. Nonlinearities with learnable
parameters such as PReLU are not supported. It is not used if n_hidden_layers is zero.

* last_wscale (float)— Scale of weight initialization of the last layer.

class pfrl.q functions.FCLSTMSAQFunction (n_dim_obs, n_dim_action, n_hidden_channels,
n_hidden_layers, nonlinearity=<function relu>,

last_wscale=1.0)
Fully-connected + LSTM (s,a)-input Q-function.

Parameters
* n_dim_obs (int) - Number of dimensions of observation space.
* n_dim_action (int)— Number of dimensions of action space.

e n_hidden_channels (int) - Number of hidden channels.

n_hidden_layers (int)— Number of hidden layers.

* nonlinearity (callable) — Nonlinearity between layers. It must accept a Variable
as an argument and return a Variable with the same shape. Nonlinearities with learnable
parameters such as PReLLU are not supported.

* last_wscale (float) - Scale of weight initialization of the last layer.

2.7. Q-functions 31

https://arxiv.org/abs/1603.00748
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

PFRL Documentation, Release 0.4.0

class pfrl.g_functions.FCBNSAQFunction (n_dim_obs, n_dim_action, n_hidden_channels,
n_hidden_layers, normalize_input=True, nonlinear-

ity=<function relu>, last_wscale=1.0)
Fully-connected + BN (s,a)-input Q-function.

Parameters
* n_dim_obs (int)— Number of dimensions of observation space.
* n_dim_action (int)— Number of dimensions of action space.
e n_hidden_channels (int)— Number of hidden channels.
* n_hidden_layers (int)— Number of hidden layers.

* normalize_input (bool) —If set to True, Batch Normalization is applied to both ob-
servations and actions.

* nonlinearity (callable)— Nonlinearity between layers. It must accept a Variable
as an argument and return a Variable with the same shape. Nonlinearities with learnable
parameters such as PReLLU are not supported. It is not used if n_hidden_layers is zero.

* last_wscale (f1oat)— Scale of weight initialization of the last layer.

class pfrl.q functions.FCBNLateActionSAQFunction (n_dim_obs, n_dim_action,
n_hidden_channels,
n_hidden_layers, normal-
ize_input=True, nonlin-
earity=<function relu>,

last wscale=1.0)
Fully-connected + BN (s,a)-input Q-function with late action input.

Actions are not included until the second hidden layer and not normalized. This architecture is used in the
DDPG paper: http://arxiv.org/abs/1509.02971

Parameters
* n_dim_obs (int)— Number of dimensions of observation space.
* n_dim_action (int)— Number of dimensions of action space.
* n_hidden_channels (int) - Number of hidden channels.

* n_hidden_layers (int)— Number of hidden layers. It must be greater than or equal to
1.

* normalize_input (bool) - If set to True, Batch Normalization is applied

* nonlinearity (callable) — Nonlinearity between layers. It must accept a Variable
as an argument and return a Variable with the same shape. Nonlinearities with learnable
parameters such as PReL.U are not supported.

* last_wscale (float)— Scale of weight initialization of the last layer.

class pfrl.q functions.FCLateActionSAQFunction (n_dim_obs, n_dim_action,
n_hidden_channels, n_hidden_layers,
nonlinearity=<function relu>,

last_wscale=1.0)
Fully-connected (s,a)-input Q-function with late action input.

Actions are not included until the second hidden layer and not normalized. This architecture is used in the
DDPG paper: http://arxiv.org/abs/1509.02971

Parameters

* n_dim_obs (int)— Number of dimensions of observation space.

32 Chapter 2. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
http://arxiv.org/abs/1509.02971
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
http://arxiv.org/abs/1509.02971
https://docs.python.org/3/library/functions.html#int

PFRL Documentation, Release 0.4.0

* n_dim_action (int)— Number of dimensions of action space.
* n_hidden_channels (int)— Number of hidden channels.

* n_hidden_ layers (int)— Number of hidden layers. It must be greater than or equal to
1.

* nonlinearity (callable) — Nonlinearity between layers. It must accept a Variable
as an argument and return a Variable with the same shape. Nonlinearities with learnable
parameters such as PReLU are not supported.

* last_wscale (float)— Scale of weight initialization of the last layer.

2.8 Replay Buffers

2.8.1 ReplayBuffer interfaces

class pfrl.replay_buffers.ReplayBuffer (capacity: Optional[int] = None, num_steps: int =

1)
Experience Replay Buffer

As described in https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf.
Parameters
* capacity (int) — capacity in terms of number of transitions
* num_steps (int)— Number of timesteps per stored transition (for N-step updates)

append (state, action, reward, next_state=None, next_action=None, is_state_terminal=False, env_id=0,

**kwargs)
Append a transition to this replay buffer.

Parameters
* state—s_t
e action—a_t
e reward-r_t
* next_state —s_{t+1} (can be None if terminal)
* next_action-a_{t+1} (can be None for off-policy algorithms)
e is_state_terminal (bool) -

* env_id (object) — Object that is unique to each env. It indicates which env a given
transition came from in multi-env training.

* xxkwargs — Any other information to store.

load (filename)
Load the content of the buffer from a file.

Parameters f£ilename (st r)— Path to a file.

sample (num_experiences)
Sample n unique transitions from this replay buffer.

Parameters n (int)— Number of transitions to sample.

Returns Sequence of n sampled transitions.

2.8. Replay Buffers 33

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

PFRL Documentation, Release 0.4.0

save (filename)
Save the content of the buffer to a file.

Parameters filename (st r)— Path to a file.

stop_current_episode (env_id=0)
Notify the buffer that the current episode is interrupted.

You may want to interrupt the current episode and start a new one before observing a terminal state. This
is typical in continuing envs. In such cases, you need to call this method before appending a new transition
so that the buffer will treat it as an initial transition of a new episode.

This method should not be called after an episode whose termination is already notified by appending a
transition with is_state_terminal=True.

Parameters env_id (object) — Object that is unique to each env. It indicates which env’s
current episode is interrupted in multi-env training.

2.8.2 ReplayBuffer implementations

class pfrl.replay_buffers.EpisodicReplayBuffer (capacity=None)

class pfrl.replay_buffers.ReplayBuffer (capacity: Optional[int] = None, num_steps: int =

1)
Experience Replay Buffer

As described in https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf.
Parameters
* capacity (int) — capacity in terms of number of transitions
* num_steps (1nt)— Number of timesteps per stored transition (for N-step updates)

class pfrl.replay_buffers.PrioritizedReplayBuffer (capacity=None, al-
pha=0.6, beta0=0.4, be-
tasteps=200000.0, eps=0.01,
normalize_by_max=True, er-
ror_min=0, error_max=1,
num_steps=1)
Stochastic Prioritization

https://arxiv.org/pdf/1511.05952.pdf Section 3.3 proportional prioritization
Parameters
* capacity (int)— capacity in terms of number of transitions
* alpha (float)— Exponent of errors to compute probabilities to sample
* betal (float) — Initial value of beta
* betasteps (int)— Steps to anneal beta to 1
* eps (float) - To revisit a step after its error becomes near zero

* normalize_ by max (bool)— Method to normalize weights. 'batch' or True (de-
fault): divide by the maximum weight in the sampled batch. 'memory': divide by the
maximum weight in the memory. False: do not normalize

34 Chapter 2. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://arxiv.org/pdf/1511.05952.pdf
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

PFRL Documentation, Release 0.4.0

class pfrl.replay_buffers.PrioritizedEpisodicReplayBuffer (capacity=None, al-

pha=0.6, beta0=0.4,
betasteps=200000.0,
eps=1e-08, normal-
ize_by_max=True, de-
fault_priority_func=None,
uniform_ratio=0,
wait_priority_after_sampling=True,
re-
turn_sample_weights=True,
error_min=None, er-
ror_max=None)

class pfrl.replay_buffers.PersistentReplayBuffer (dirname, capacity, *, ancestor=None,

logger=None, distributed=Fualse,
group=None)
Experience replay buffer that are saved to disk storage

ReplayBuffer is used to store sampled experience data, but the data is stored in DRAM memory and re-
moved after program termination. This class add persistence to ReplayBuffer, so that the learning process
can be restarted from a previously saved replay data.

Parameters

* dirname (str) — Directory name where the buffer data is saved. Please note that it tries
to load data from it as well. Also, it would be important to note that it can’t be used with
ancestor.

* capacity (int)— Capacity in terms of number of transitions

* ancestor (str) — Path to pre-generated replay buffer. The ancestor directory is used to
load/save, instead of dirname.

* logger - logger object

* distributed (bool) — Use a distributed version for the underlying persistent queue
class. You need the private package pfrlimn to use this option.

* group — forch.distributed group object. Only used when distributed=True and pfrlmn
package is available

Note: Contrary to the original ReplayBuffer implementation, state and next_state, action and
next_action are pickled and stored as different objects even they point to the same object. This may lead to
inefficient usage of storage space, but it is recommended to buy more storage - hardware is sometimes cheaper
than software.

class pfrl.replay_buffers.PersistentEpisodicReplayBuffer (dirname, capacity,
* ancestor=None,
logger=None, dis-

tributed=False,
group=None)
Episodic version of PersistentReplayBuffer

Parameters

* dirname (st r)— Directory name where the buffer data is saved. This cannot be used with
ancestor

* capacity (int) - Capacity in terms of number of transitions

2.8.

Replay Buffers 35

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

PFRL Documentation, Release 0.4.0

* ancestor (str)— Path to pre-generated replay buffer. The ancestor directory is used to
load/save, instead of dirname.

* logger - logger object

* distributed (bool) — Use a distributed version for the underlying persistent queue
class. You need the private package pfrimn to use this option.

* group — forch.distributed group object. Only used when distributed=True and pfrlmn
package is available

Note: Current implementation is inefficient, as episodic memory and memory data shares the almost same data
in EpisodicReplayBuffer by reference but shows different data structure. Otherwise, persistent version
of them does not share the data between them but backing file structure is separated.

36 Chapter 2. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

CHAPTER 3

Indices and tables

* genindex
* modindex

e search

37

PFRL Documentation, Release 0.4.0

38

Chapter 3. Indices and tables

Index

Symbols

__call__ () (pfrl.q_function.StateActionQFunction
method), 29

__call__ () (pfrl.q_function.StateQFunction method),
29

A

A2C (class in pfrl.agents), 7

A3C (class in pfrl.agents), 7

ACER (class in pfrl.agents), 8

act () (pfrl.agent.Agent method), 6

ActionValue (class in pfrl.action_value), 5

AdditiveGaussian (class in pfrl.explorers), 24

AdditiveOU (class in pfrl.explorers), 25

Agent (class in pfrl.agent), 6

AL (class in pfrl.agents), 9

append () (pfrl.replay_buffers.ReplayBuffer method),
33

B

Boltzmann (class in pfrl.explorers), 25
Branched (class in pfrl.nn), 26

C

CategoricalDoubleDQN (class in pfrl.agents), 9

CategoricalDQN (class in pfrl.agents), 10

ConstantEpsilonGreedy (class in pfrl.explorers),
25

D

DDPG (class in pfrl.agents), 10

DeterministicHead (class in pfrl.policies), 29

DiscreteActionValue (class in pfrl.action_value),
5

DistributionalDuelingDQN
pfrl.q_functions), 29

(class in

DistributionalSingleModelStateQFunctionWithDiscret:
(class in pfrl.q_functions), 30

DoubleDQN (class in pfrl.agents), 11

DoublePAL (class in pfrl.agents), 11

DPP (class in pfrl.agents), 11

DQN (class in pfrl.agents), 12

DuelingDQN (class in pfrl.q_functions), 29

E

EmpiricalNormalization (class in pfrl.nn), 26

EpisodicReplayBuffer (class in
pfrl.replay_buffers), 34

evaluate_actions ()
(pfrl.action_value.ActionValue
5

Explorer (class in pfrl.explorer), 24

F

FactorizedNoisyLinear (class in pfrl.nn), 26

FCBNLateActionSAQFunction (class n
pfrl.q_functions), 32

FCBNSAQFunction (class in pfrl.q_functions), 32

FCLateActionSAQFunction (class in
pfrl.q_functions), 32

FCLSTMSAQFunction (class in pfrl.q_functions), 31

FCQuadraticStateQFunction (class in
pfrl.q_functions), 31

FCSAQFunction (class in pfrl.q_functions), 31

FCStateQFunctionWithDiscreteAction (class
in pfrl.q_functions), 29

forward () (pfrl.nn.Recurrent method), 26

G

GaussianHeadWithDiagonalCovariance (class
in pfrl.policies), 28
GaussianHeadWithFixedCovariance (class in

method),

DistributionalFCStateQFunctionWithDiscreteActidZ)frl-POIiCies), 28

(class in pfrl.q_functions), 30

GaussianHeadWithStateIndependentCovariance
(class in pfrl.policies), 28

39

PFRL Documentation, Release 0.4.0

generate_exp_1id () (in module pfrl.experiments),
23

get_statistics () (pfrl.agent.Agent method), 6

Greedy (class in pfrl.explorers), 25

greedy_actions (pfrl.action_value.ActionValue at-
tribute), 5

ION (class in pfrl.agents), 13

L

LargeAtariCNN (class in pfrl.nn), 27

LinearDecayEpsilonGreedy (class in
pfrl.explorers), 25
LinearInterpolationHook (class in

pfrl.experiments), 23
load () (pfrl.agent.Agent method), 6
load () (pfrl.replay_buffers.ReplayBuffer method), 33

M

max (pfrl.action_value.ActionValue attribute), 5
MLP (class in pfri.nn), 27
MLPBN (class in pfrl.nn), 27

O

observe () (pfrl.agent.Agent method), 6

P

PAL (class in pfrl.agents), 13
params (pfrl.action_value.ActionValue attribute), 5
PersistentEpisodicReplayBuffer (class in
pfrl.replay_buffers), 35
PersistentReplayBuffer
pfrl.replay_buffers), 35
PPO (class in pfrl.agents), 13
prepare_output_dir ()
pfrl.experiments), 23
PrioritizedEpisodicReplayBuffer (class in
pfrl.replay_buffers), 34
PrioritizedReplayBuffer
pfrl.replay_buffers), 34

(class in

(in module

(class in

Q

QuadraticActionValue
pfrl.action_value), 5

(class in

R

Recurrent (class in pfrl.nn), 26
RecurrentBranched (class in pfrl.nn), 27
RecurrentSequential (class in pfrl.nn), 27
REINFORCE (class in pfrl.agents), 14
ReplayBuffer (class in pfrl.replay_buffers), 33, 34

S

sample ()
33
save () (pfrl.agent.Agent method), 6
save () (pfrl.replay_buffers.ReplayBuffer method), 33
select_action () (pfrlexplorer.Explorer method),
24
SingleActionValue (class in pfrl.action_value), 6
SingleModelStateActionQFunction (class in
pfrl.q_functions), 31
SingleModelStateQFunctionWithDiscreteAction
(class in pfrl.q_functions), 29
SmallAtariCNN (class in pfrl.nn), 27
SoftActorCritic (class in pfrl.agents), 15
SoftmaxCategoricalHead (class in pfrlpolicies),
29
StateActionQFunction (class in pfrl.q_function),
29
StateQFunction (class in pfrl.q_function), 29
StepHook (class in pfrl.experiments), 23
stop_current_episode ()
(pfrl.replay_buffers.ReplayBuffer
34

(pfrl.replay_buffers.ReplayBuffer method),

method),

T

TD3 (class in pfrl.agents), 16
to_factorized_noisy () (in module pfrl.nn), 28

train_agent_async () (in module
pfrl.experiments), 19
train_agent_batch () (in module

pfrl.experiments), 20
train_agent_batch_with_evaluation ()
module pfrl.experiments), 20
train_agent_with_evaluation ()
pfrl.experiments), 22
TRPO (class in pfrl.agents), 17

(in

(in module

40

Index

	Installation
	How to install PFRL

	API Reference
	Action values
	Agents
	Experiments
	Explorers
	Modules
	Policies
	Q-functions
	Replay Buffers

	Indices and tables
	Index

